(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数.
(1) 试说明函数的图像是由函数的图像经过怎样的变换得到的;
(2) (理科)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;
(3) 求函数的单调区间和值域.
(本小题满分12分)设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.
定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“等比函数”.现有定义在上的如下函数:①;②; ③; ④.则其中是“等比函数”的的序号为 .
若直角坐标平面内两点满足条件:①点都在的图象上;②点关于原点对称,则对称点对是函数的一个“兄弟点对”(点对与可看作一个“兄弟点对”).已知函数, 则的“兄弟点对”的个数为
A.2 | B.3 | C.4 | D.5 |
如果对于函数的定义域内任意两个自变量的值,当时,都有且存在两个不相等的自变量,使得,则称为定义域上的不严格的增函数.已知函数的定义域、值域分别为,,,且为定义域上的不严格的增函数,那么这样的函数共有________个.
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个结论:
①;
②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,,,使得为等边三角形.
其中正确结论的个数是( )
A. | B. | C. | D. |
(本小题满分14分)对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.
(1)求闭函数的“好区间”;
(2)若为闭函数的“好区间”,求、的值;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
设m是一个非负整数,m的个位数记作,如,,,称这样的函数为尾数函数.给出下列有关尾数函数的结论:
①;
②,若,都有;]
③;
则正确的结论的个数为( )
A.3 | B.2 | C.1 | D.0 |
在集合中,任取一个偶数和一个奇数,构成以原点为起点的向量.从所有得到的以原点为起点的向量中,任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为,其中面积等于的平行四边形的个数为,则( )
A. | B. | C. | D. |
定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:
① ② ③ ④.
则其中是“保等比数列函数”的的序号为
A.①② | B.③④ | C.①③ | D.②④ |
设m是一个非负整数,m的个位数记作,如,,,称这样的函数为尾数函数.给出下列有关尾数函数的结论:
①;
②,若,都有;
③;
④.
则正确的结论的个数为( )
A.1 | B.2 | C.3 | D.4 |
函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”______________.
(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
对函数,在使成立的所有常数中,我们把的最大值叫做函数的下确界.现已知定义在R上的偶函数满足,当时,,则的下确界为 ( )
A. | B. | C. | D. |