高中数学

设函数的定义域为R,若存在常数M>0,使对 一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④  ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有(    )

A.1个 B.2个 C.3个 D.4个
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

, 对于使成立的所有常数M中,我们把M的最小值1叫做 的上确界.若,且,则的上确界为

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

表示不超过的最大整数,如.给出下列命题:
①对任意实数,都有
②对任意实数,y,都有

④若函数,当时,令的值域为A,记集合A的元素个数为,则的最小值为
其中所有真命题的序号是_________________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数.定义:,……,
…满足的点称为阶不动点.则的n
阶不动点的个数是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

福建理)设的两个非空子集,如果存在一个从的函数满足:对任意,当时,恒有,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是(  )

A.
B.
C.
D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是定义在集合上的两个函数.对任意的,存在常数,使得,且.则函数
在集合上的最大值为(     )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

第一小题3分,第二小题5分,第三小题6分.
(1)已知函数是奇函数,为常数,求实数的值;
(2)若,且,求的解析式;
(3)对于(2)中的,若恒成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于两个图形,我们将图形上的任意一点与图形上的任意一点间的距离中的最小值,叫做图形与图形的距离.若两个函数图像的距离小于1,陈这两个函数互为“可及函数”.给出下列几对函数,其中互为“可及函数”的是_________.(写出所有正确命题的编号).




.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义在 上的函数 ;当;则的大小关系为(   ).

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,若,使成立,则称为函数的一个“生成点”.函数的“生成点”共有(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
;②; ③; ④
其中存在唯一“可等域区间”的“可等域函数”为(     )

A.①②③ B.②③ C.①③ D.②③④
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若直角坐标平面内的亮点P,Q满足条件: P,Q都在函数y=f(x)的图像上, P,Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”)。
已知函数,则此函数的“友好点对”有(     )

A.0对 B.1对 C.2对 D.3对
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,满足
(1)求常数c的值;
(2)解关于的不等式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学函数迭代试题