如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当时,求在上有最大值;
(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.
已知的三内角分别为,向量
,记函数.
(1)若,求的面积;
(2)若关于的方程有两个不同的实数解,求实数的取值范围.
,则称为与
在上的一个“分界函数”.如,则称
一个“分界函数”。
(1)求证:是和在上的一个“分界函数”;
(2)若和在上一定存在一个“分界函数”,试确定实数的取值范围.
若函数 y =f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是[-2,2]上的“平均值函数”,O就是它的均值点.
(1)若函数,f(x)= x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是 .
(2)若f(x)=㏑x是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,则㏑xo与 的大小关系是 .
设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上为“凸函数”.已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为( )
A.4 | B.3 | C.2 | D.1 |
已知函数在上的最大值为,则函数
的零点的个数为( )
A.个 | B.个 | C.个 | D.个 |
对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是( )
A. |
B. |
C. |
D. |
没函数的定义域为R,若存在常数M>0,使对一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④ ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
设函数的定义域为R,若存在常数M>0,使对 一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④ ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
设, 对于使成立的所有常数M中,我们把M的最小值1叫做 的上确界.若,且,则的上确界为
A. | B. | C. | D. |
设表示不超过的最大整数,如,.给出下列命题:
①对任意实数,都有;
②对任意实数,y,都有;
③;
④若函数,当时,令的值域为A,记集合A的元素个数为,则的最小值为.
其中所有真命题的序号是_________________.