若函数 y =f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是[-2,2]上的“平均值函数”,O就是它的均值点.
(1)若函数,f(x)= x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是 .
(2)若f(x)=㏑x是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,则㏑xo与 的大小关系是 .
对定义在区间D上的函数和,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④,则存在实数,使得在区间 上被替代;
其中真命题的有
如果对于函数的定义域内任意两个自变量的值,当时,都有且存在两个不相等的自变量,使得,则称为定义域上的不严格的增函数.已知函数的定义域、值域分别为,,,且为定义域上的不严格的增函数,那么这样的函数共有________个.
函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”______________.
【原创】已知函数f(x)定义域为D,若∀a,b,c∈D,f(a),f(b),f(c)都是某一三角形的三边,则称f(x)为定义在D上的“保三角形函数”,以下说法正确的是 .
①f(x)=2(x∈R)不是R上的“保三角形函数”
②若定义在R上的函数f(x)的值域为[,2],则f(x)一定是R上的“保三角形函数”
③f(x)=是其定义域上的“保三角形函数”
④当t>1时,函数f(x)=ex+t一定是[0,1]上的“保三角形函数”
对于定义在上的函数,若存在距离为的两条直线和,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:
①;②;③;④
其中在区间上通道宽度可以为的函数有 (写出所有正确的序号).
定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.例如是上的平均值函数,0就是它的均值点.若函数是上的“平均值函数”,则实数m的取值范围是_________.
设函数与是定义在同一区间上的两个函数,若对任意的,都有,则称与在上是“度和谐函数”,称为“度密切区间”.设函数与在上是“度和谐函数”,则的取值范围是____________
【原创】对定义在区间D上的函数和,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④,则存在实数,使得在区间 上被替代;
其中真命题的有
函数的定义域为A,若且时总有,则称为单函数.例如,函数=2x+1()是单函数.下列命题:
①函数(xR)是单函数;
②指数函数(xR)是单函数;
③若为单函数,且,则;
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是_________.(写出所有真命题的编号)
定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“等比函数”.现有定义在上的如下函数:①;②; ③; ④.则其中是“等比函数”的的序号为 .
若函数同时满足:①对于定义域上的任意,恒有 ②对于定义域上的任意,当时,恒有,则称函数为“理想函数”。给出下列四个函数中:⑴ ⑵ ⑶ , ⑷ ,能被称为“理想函数”的有_ _ (填相应的序号) 。