(本小题满分14分)已知函数有下列性质:“若
,使得”成立。
(1)利用这个性质证明唯一;
(2)设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由。
已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)试探究直线与函数的图像交点个数的情况,并说明理由.
已知奇函数的定义域为实数集,且在上是增函数,当 时,是否存在实数,使对所有的恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知函数f(x)=lg(ax-kbx )(k是正实数,a>1>b>0)的定义域为(0,+∞),问是否存在实数a,b,当x∈(1,+∞)时,f(x)的值取到一切正实数,且f(3)=lg4;如果存在,求出a,b的值;如果不存在,请说明理由。
已知是定义在 [ – 1,1 ] 上的奇函数,且,若m,,时有.
(1)用定义证明在 [ – 1,1 ] 上是增函数;
(2)若成立,求a的取值范围.
设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(O<x<100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元.
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?
在2009年底的哥本哈根大会上,中国向全世界承诺,到2020年底,中国的炭排放将降至2009年炭排放量的,目前我国的减排手段有两种,第一种是通过引进新技术,新工艺使得每年的炭排放比上一年炭排放总量均减少个百分点,第二种是通过教育与宣传使得全体国民具有节能减排的意识,进而减少炭排放。
(1):若通过第二种方式的减排量每年均是一个常数,求2011年我国的炭排放量
(2):若全体国民齐心协力,使第二种方式的减排量能够占上年的炭排放总量的个百分点,要保证完成减排目标,求满足的范围。(已知,,,)
某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给地10台,地8台.已知从甲地调动1台至地,地的运费分别为400元和800元,从乙地调运1台至地,地的费用分别为300元和500元.
(1) 设从乙地调运台至地,求总费用关于台数的函数解析式;
(2) 若总运费不超过9000元,问共有几种调运方案;
(3) 求出总运费最低的调运方案及最低的费用.