已知函数满足,是不为的实常数。
(1)若函数是周期函数,写出符合条件的值;
(2)若当时,,且函数在区间上的值域是闭区间,求的取值范围;
(3)若当时,,试研究函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由。
设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又,
(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由。
已知函数。
(1)若函数是上的增函数,求实数的取值范围;
(2)当时,若不等式在区间上恒成立,求实数的取值范围;
(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
已知当点在的图像上运动时,点函数的图像上运动。
(1)求的表达式;
(2)若集合{关于的方程有实根,},求集合A;
(3)设函数的定义域为<值域为,求实数的值。
对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有;
②当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。
铁道机车运行1小时所需的成本由两部分组成,固定部分为元,变动部分与运行速度V(千米/小时)的平方成正比。比例系数为k(k≠0)。如果机车匀速从甲站开往乙站,为使成本最省应以怎样的速度运行?
已知水渠在过水断面面积为定值的情况下,过水湿周越小,其流量越大.现有以下两种设计,如图:
图①的过水断面为等腰△ABC,AB=BC,过水湿周
图②的过水断面为等腰梯形∥,过水湿周.若与梯形ABCD的面积都为S,
(I)分别求的最小值;
(II)为使流量最大,给出最佳设计方案.