求下列函数的最值.
(1)已知,求的最大值;
(2)已知,求的最小值;
(3)已知,求的最大值.
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
(本小题满分16分)
已知函数=+,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,)上单调递减,在(,上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题満分14分)
二次函数f(x+1)-f(x)=2x,且f(0)=1
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y= f(x)的图像恒在y=2x+m的图像上方,试确定实数m的取值范围。
(本小题满分14分)
已知函数的极值点为和.
(Ⅰ)求实数,的值;
(Ⅱ)试讨论方程根的个数;
(Ⅲ)设,斜率为的直线与曲线交于
两点,试比较与的大小,并给予证明.
. (12分)
已知函数f(x)= ,(p≠0)是奇函数.
(1)求m的值.
(2)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.
对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.
(1)判断1是否为函数≤≤的“均值”,请说明理由;
(2)若函数为常数)存在“均值”,求实数a的取值范围;
(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
.(本小题满分14分)
已知函数是函数的极值点.
(1)求实数的值;
(2)若方程有两个不相等的实数根,求实数m的取值.
、某商品在近30天内,每件的销售价格(元)与时间t(天)的函数关系是:
,该商品的日销售量Q(件)与时间t(天)的函数关系是
Q= -t+40 (0<t≤30,),求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?