设函数
(I)求函数的单调区间;
(II)若不等式()在上恒成立,求的最大值.
已知函数().
(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;
(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.
近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
给出下列五个命题中,其中所有正确命题的序号是_______.
①函数的最小值是3
②函数若且,则动点到直线的
最小距离是.
③命题“函数当”是真命题.
④函数的最小正周期是1的充要条件是.
⑤已知等差数列的前项和为,为不共线的向量,又
若,则.
(小题满分14分)已知定义域为R的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数.
(1) 试说明函数的图像是由函数的图像经过怎样的变换得到的;
(2) (理科)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;
(3) 求函数的单调区间和值域.
如图,正方形的顶点、在反比例函数的图象上,顶点、分别在轴、轴的正半轴上,再在其右侧作正方形,顶点、在反比例函数的图象上,顶点在轴的正半轴上,则点的坐标为 .