设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.
已知函数f(x)=(m为常数0<m<1),且数列{f()}是首项为2,公差为2的等差数列.
(1)=f(),当m=时,求数列{}的前n项和;
(2)设=·,如果{}中的每一项恒小于它后面的项,求m的取值范围.
已知a为实数,。
⑴求导数;
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。
探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
y |
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.02 |
4.04 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+(x>0)在区间(0,2)上递减;
(1)函数f(x)=x+(x>0)在区间 上递增.
当x= 时,y最小= .
(2)证明:函数f(x)=x+在区间(0,2)上递减.
(3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)