(本题14分)
已知是一个奇函数.
(1)求的值和的值域;
(2)设>,若在区间是增函数,求的取值范围
(3) 设,若对取一切实数,不等式都成立,求的取值范围.
(本小题满分14分)
已知二次函数的最小值为1,且.
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.
若函数y=ax+b-1(a>0且a≠1 )的图象经过一、三、四象限,则下列结论中正确的是( )
A.a>1且b<1 | B.0<a<1 且b<0 |
C.0<a<1 且b>0 | D.a>1 且b<0 |
已知函数为奇函数,为常数,
(1)求实数的值;
(2)证明:函数在区间上单调递增;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
(本小题满分12分)
(1)已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?
(2)若方程ax2-x-1=0在(0,1)内恰有一解,求实数a的取值范围.
定义在上的奇函数,当时,
(1)求在上的解析式;
(2)判断在上的单调性,并给予证明;
(3)当时,关于的方程有解,试求实数的取值范围.