设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.
若函数在上单调递增,那么实数的取值范围是( )
A. | B. | C. | D. |
函数,其中,若动直线与函数的图像有三个不同的交点,则实数的取值范围是______________.
如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.
(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.
(2)已知具有“性质”,且当时,求在上的最大值.
(3)设函数具有“性质”,且当时,.若与交点个数为2013个,求的值.
定义域是一切实数的函数,其图像是连续不断的,且存在常数()使得
对任意实数都成立,则称是一个“—伴随函数”.有下列关于“—伴随函数”的结论:
①是常数函数中唯一一个“—伴随函数”;
②“—伴随函数”至少有一个零点;
③是一个“—伴随函数”;
其中正确结论的个数是 ( )
A.1个; | B.2个; | C.3个; | D.0个; |
对于函数f (x)和g(x),其定义域为[a, b],若对任意的x∈[a, b]总有|1-|≤,则称f (x)可被g(x)置换,那么下列给出的函数中能置换f (x)= x∈[4,16]的是 ( )
A.g(x)=2x+6 x∈[4,16] | B.g(x)=x2+9 x∈[4,16] |
C.g(x)= (x+8) x∈[4,16] | D.g(x)=(x+6) x∈[4,16] |
下列说法正确的是
A.函数在其定义域上是减函数 |
B.两个三角形全等是这两个三角形面积相等的必要条件 |
C.命题“R,”的否定是“R,” |
D.给定命题、,若是真命题,则是假命题 |
已知函数,
(1)当时,求函数的极值;
(2) 若在[-1,1]上单调递减,求实数的取值范围.