已知数列{an}的通项公式是an=2n-3()n,则其前20项和为( )
A.380-(1-) | B.400-(1-) |
C.420-(1-) | D.440-(1-) |
数列{an}的前n项和为Sn,若an=,则S10等于( )
A. | B. | C. | D. |
已知数列{an},若点(n,an)(n∈N*)在经过点(5,3)的定直线l上,则数列{an}的前9项和S9=( )
A.9 | B.10 | C.18 | D.27 |
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(1)求a2,a3.(2)求通项公式an.
已知{an}是各项均为正数的等比数列,且a1+a2=2(+),a3+a4+a5=64(++),
(1)求{an}的通项公式.
(2)设bn=(an+)2,求数列{bn}的前n项和Tn.
已知数列{an}中,a1=1,前n项和为Sn且Sn+1=Sn+1,n∈N*.
(1)求数列{an}的通项公式.
(2)求数列{}的前n项和Tn.
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*),则数列{an}的通项公式an= .
在数列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中实数c≠0.求{an}的通项公式.
已知数列{an}满足前n项和Sn=n2+1,数列{bn}满足bn=,且前n项和为Tn,设cn=T2n+1-Tn.
(1)求数列{bn}的通项公式.
(2)判断数列{cn}的增减性.
已知二次函数f(x)=px2+qx(p≠0),其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式.
(2)若cn=(an+2),2b1+22b2+23b3+…+2nbn=cn,求数列{bn}的通项公式.
已知数列{an}中,a1=,an+1=1-(n≥2),则a16= .
已知数列{an}满足:a1=m(m为正整数),an+1=若a6=1,则m所有可能的值为 .
定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为( )
A. | B.2 | C.3 | D.4 |
已知数列{an}的前n项和Sn=n2-9n,第k项满足5<ak<8,则k等于( )
A.9 | B.8 | C.7 | D.6 |