已知数列{an}中,a1=1,(n+1)an+1=nan(n∈N*),则该数列的通项公式an=________.
等比数列{an}的首项a1=,且4an-1+an+1=4an,则sina1+sina2+sina3+…+sina2014=
若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}的前n项和,则log2(S2 012+2)=________.
给定有限单调递增数列,数列至少有两项)且
,定义集合.若对任意点,
存在点使得为坐标原点),则称数列具有性质.
(1)给出下列四个命题,其中正确的是 .(填上所有正确命题的序号)
①数列-2,2具有性质;
②数列:-2,-1,1,3具有性质;
③若数列具有性质,则中一定存在两项,使得;
④若数列具有性质,且,则.
(2)若数列只有2014项且具有性质,则的所有项和 .
已知数列{an}中,a1=,an+1=1-(n≥2),则a16= .
已知数列{an}:a1,a2,a3,…,an,如果数列{bn}:b1,b2,b3,…,bn满足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,则称{bn}为{an}的“衍生数列”.若数列{an}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{an}为________;若n为偶数,且{an}的“衍生数列”是{bn},则{bn}的“衍生数列”是________.
第30届奥运会在伦敦举行.设数列an=logn+1(n+2)(n∈N*),定义使a1·a2·a3…ak为整数的实数k为奥运吉祥数,则在区间[1,2 012]内的所有奥运吉祥数之和为________.
已知数列,且通项公式分别为,现抽出数列中所有相同的项并按从小到大的顺序排列成一个新的数列,则可以推断 (用表示()).
已知数列满足,(),计算并观察数列的前若干项,根据前若干项的变化规律推测, .
对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________
对于正项数列{an},定义Hn=为{an}的“光阴”值,现知某数列的“光阴”值为Hn=,则数列{an}的通项公式为________.