(本题满分14分,第1小题6分,第2小题8分)
已知函数的反函数为
(1)若,求实数的值;
(2)若关于的方程在区间内有解,求实数的取值范围;
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|====.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
已知定义在上的函数=
(Ⅰ)若,求实数的取值范围;
(Ⅱ)若对上的任意都成立,求实数的取值范围;
(Ⅲ)若在[m,n]上的值域是[m,n](m≠n),求实数的取值范围
已知函数
(1)若函数在上为增函数,求正实数的取值范围;
(2)当时,求函数在上的最值;
(3)当时,对大于1的任意正整数,试比较与的大小关系.
已知函数(为常数).
(1)若1为函数的零点, 求的值;
(2)证明函数在[0,2]上是单调递增函数;
(3)已知函数, 求函数的零点.
函数函数的图像如图所示。
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间。