初中数学

如图1,将 ΔABC 纸片沿中位线 EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰 ΔBED 和等腰 ΔDHC 的底边上的高线 EF HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将 ABCD 纸片按图2的方式折叠成一个叠合矩形 AEFG ,则操作形成的折痕分别是线段     S 矩形 AEFG : S ABCD =   

(2) ABCD 纸片还可以按图3的方式折叠成一个叠合矩形 EFGH ,若 EF = 5 EH = 12 ,求 AD 的长;

(3)如图4,四边形 ABCD 纸片满足 AD / / BC AD < BC AB BC AB = 8 CD = 10 ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD BC 的长.

来源:2017年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

一块竹条编织物,先将其按如图所示绕直线 MN 翻转 180 ° ,再将它按逆时针方向旋转 90 ° ,所得的竹条编织物是 (    )

A.B.

C.D.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

一张矩形纸片 ABCD ,已知 AB = 3 AD = 2 ,小明按如图步骤折叠纸片,则线段 DG 长为 (    )

A. 2 B. 2 2 C.1D.2

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,一张三角形纸片 ABC ,其中 C = 90 ° AC = 4 BC = 3 .现小林将纸片做三次折叠:第一次使点 A 落在 C 处;将纸片展平做第二次折叠,使点 B 落在 C 处;再将纸片展平做第三次折叠,使点 A 落在 B 处.这三次折叠的折痕长依次记为 a b c ,则 a b c 的大小关系是 (    )

A. c > a > b B. b > a > c C. c > b > a D. b > c > a

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了 (    )

A.1次B.2次C.3次D.4次

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 纸片中, C = 90 ° AC = 6 BC = 8 ,点 D 在边 BC 上,以 AD 为折痕 ΔABD 折叠得到△ AB ' D AB ' 与边 BC 交于点 E .若 ΔDEB ' 为直角三角形,则 BD 的长是  

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 BC = 2 E AB 的中点,直线 l 平行于直线 EC ,且直线 l 与直线 EC 之间的距离为2,点 F 在矩形 ABCD 边上,将矩形 ABCD 沿直线 EF 折叠,使点 A 恰好落在直线 l 上,则 DF 的长为  

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则 BC ̂ 的度数是 (    )

A. 120 ° B. 135 ° C. 150 ° D. 165 °

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,在等腰三角形 ABC 中, AB = AC = 4 BC = 7 .如图2,在底边 BC 上取一点 D ,连接 AD ,使得 DAC = ACD .如图3,将 ΔACD 沿着 AD 所在直线折叠,使得点 C 落在点 E 处,连接 BE ,得到四边形 ABED ,则 BE 的长是 (    )

A.4B. 17 4 C. 3 2 D. 2 5

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形 EFGH EH = 12 厘米, EF = 16 厘米,则边 AD 的长是 (    )

A.12厘米B.16厘米C.20厘米D.28厘米

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 CB = 2 ,点 E 为线段 AB 上的动点,将 ΔCBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是  (写出所有正确结论的序号)

①当 E 为线段 AB 中点时, AF / / CE

②当 E 为线段 AB 中点时, AF = 9 5

③当 A F C 三点共线时, AE = 13 2 13 3

④当 A F C 三点共线时, ΔCEF ΔAEF

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 边的中点,沿 EC 对折矩形 ABCD ,使 B 点落在点 P 处,折痕为 EC ,连接 AP 并延长 AP CD F 点,连接 CP 并延长 CP AD Q 点.给出以下结论:

①四边形 AECF 为平行四边形;

PBA = APQ

ΔFPC 为等腰三角形;

ΔAPB ΔEPC

其中正确结论的个数为 (    )

A.1B.2C.3D.4

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 沿对角线 BD 折叠,点 C 落在点 E 处, BE AD 于点 F ,已知 BDC = 62 ° ,则 DFE 的度数为 (    )

A. 31 ° B. 28 ° C. 62 ° D. 56 °

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题