如图,点 , , 在 上, ,过点 作 的切线交 的延长线于点 ,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|
如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
(1)当点在上时,求点与点的最短距离;
(2)若点在上,且将的面积分成上下两部分时,求的长;
(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.
如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.
(1)求证:;
(2)若,,求的半径.
如图是一张长方形纸片 ,已知 , , 为 上一点, ,现要剪下一张等腰三角形纸片 ,使点 落在长方形 的某一条边上,则等腰三角形 的底边长是 .
已知:如图, 为锐角三角形, , .
求作:线段 ,使得点 在直线 上,且 .
作法:①以点 为圆心, 长为半径画圆,交直线 于 , 两点;
②连接 .
线段 就是所求作的线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明: ,
.
,
点 在 上.
又 点 , 都在 上,
(填推理的依据).
.
如图,在中,,点在上(不与点,重合).只需添加一个条件即可证明,这个条件可以是 (写出一个即可).
如图,△ABC中,AC=BC,以BC上一点O为圆心,OB为半径作⊙O交AB于点D已知经过点D的⊙O切线恰好经过点C
(1)试判断CD与AC的位置关系,并证明;
(2)若△ACB∽△CDB,且AC=3,求图中阴影部分的面积
操作题:如图,△ABC内接于⊙O,AB=AC,P是⊙O上一点.
(1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线;
(2)结合图②,说明你这样画的理由.