如图,在 中, , , 为 边上的中线, 平分 ,交 边于点 ,过点 作 ,垂足为 ,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 是 的内接三角形, , ,作 ,并与 相交于点 ,连接 ,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|
在中,,点在以为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦,使;
(2)在图2中以为边作一个的圆周角.
如图,抛物线交轴于、两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线交轴于点,交轴于点,交抛物线的对称轴于点.
(1)求出,,的值.
(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.
(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.
如图, 内接于圆 ,且 ,延长 到点 ,使 ,连接 交圆 于点 .
(1)求证: ;
(2)填空:
①当 的度数为 时,四边形 是菱形.
②若 , ,则 的长为 .
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
如图①,在中,,过上一点作交于点,以为顶点,为一边,作,另一边交于点.
(1)求证:四边形为平行四边形;
(2)当点为中点时,的形状为 ;
(3)延长图①中的到点,使,连接,,,得到图②,若,判断四边形的形状,并说明理由.
我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作,若,则该等腰三角形的顶角为 度.
图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段的端点在格点上.
(1)在图①、图2中,以为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)
(2)在图③中,以为边画一个平行四边形,且另外两个顶点在格点上.