如图,两水平面(虚线)之间的距离为 H ,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量为 m 、电荷量分别为 q 和 – q ( q > 0 ) 的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为 N 刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为 g。求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小。
在半径R=5 000 km的某星球表面,宇航员做了如下实验,实验装置如图甲所示.竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2 kg的小球,从轨道AB上高H处的某点由静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:(1)圆轨道的半径及星球表面的重力加速度.(2)该星球的第一宇宙速度.
如图所示,一水平的传送带长为20m,以2m/s的速度匀速顺时针转动。已知该物体与传送带间的动摩擦因数为0.1,现将该物体由静止轻放到传送带的A端。求物体被送到另一端B点所需的时间。(g取10m/s2)
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:(1)质子刚进入电场时的速度方向和大小;(2)OC间的距离;(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
(12分)如图所示,在倾角为θ的绝缘斜面上,有相距为L的A、B两点,分别固定着两个带电量均为的正点电荷。O为AB连线的中点,a、b是AB连线上两点,其中Aa=Bb=。一质量为m、电荷量为+q的小滑块(可视为质点)以初动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为,第一次到达b点时的动能恰好为零,已知静电力常量为。求:(1)两个带电量均为的正点电荷在a点处的合场强大小和方向;(2)小滑块由a点向b点运动的过程中受到的滑动摩擦力大小;(3)aO两点间的电势差。
如图所示,Ⅰ、Ⅱ、Ⅲ为电场和磁场的理想边界,一束电子(电量为e,质量为m,重力不计)由静止状态从P点经过Ⅰ、Ⅱ间的电场加速后垂直到达边界Ⅱ的Q点。匀强磁场的磁感应强度为B,磁场边界宽度为d,电子从磁场边界Ⅲ穿出时的速度方向与电子原来的入射方向夹角为30°。求:(1)电子在磁场中运动的时间t;(2)若改变PQ间的电势差,使电子刚好不能从边界Ⅲ射出,则此时PQ间的电势差U是多少?