如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路,垂直的两条道路,且的造价分别为万元/百米,万元/百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路的总造价为万元,题中所涉及的长度单位均为百米.(1)求解析式;(2)当为多少时,总造价最低?并求出最低造价.
(本小题10分)已知等差数列{an}中,a3 + a4 = 15,a2a5 = 54,公差d < 0.(1)求数列{an}的通项公式an;(2)求数列的前n项和Sn的最大值及相应的n的值.
(本小题10分)在△ABC中,,求.
.已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)的值;(2)m的值;(3)方程的两根及此时θ的值.
.设平面内的向量点是直线上的一个动点,求当取最小值时,的坐标及的余弦值。
. 设y="A" sin(ωx+j)(A>0,ω>0,|j|<π)最高点D的坐标为(2,),由最高点运动到相邻的最低点时,曲线与轴交点E的坐标为(6,0),(1)求A、ω、j的值;(2)求出该函数的频率,初相和单调区间.