飞行时间质谱仪可对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。(1)当a、b间的电压为U1,在M、N间加上适当的电压U2,使离子到达探测器。求离子到达探测器的全部飞行时间。(2)为保证离子不打在极板上,试求U2与U1的关系。
如图所示,是磁流体动力发电机的工作原理图.一个水平放置的上下、前后封闭的矩形塑料管,其宽度为a,高度为b,其内充满电阻率为ρ的水银,由涡轮机产生的压强差p使得这个流体具有恒定的流速v0.管道的前后两个侧面上各有长为L的由铜组成的面,实际流体的运动非常复杂,为简化起见作如下假设:a.尽管流体有粘滞性,但整个横截面上的速度均匀;b.流体的速度总是与作用在其上的合外力成正比;c.导体的电阻:R=ρl/S,其中ρ、l和S分别为导体的电阻率、长度和横截面积;d.流体不可压缩.若由铜组成的前后两个侧面外部短路,一个竖直向上的匀强磁场只加在这两个铜面之间的区域,磁感强度为B(如图).(1)写出加磁场后,两个铜面之间区域的电阻R的表达式(2)加磁场后,假设新的稳定速度为v,写出流体所受的磁场力F与v关系式,指出F的方向(3)写出加磁场后流体新的稳定速度v的表达式(用v0、p、L、B、ρ表示);(4)为使速度增加到原来的值v0,涡轮机的功率必须增加,写出功率增加量的表达式(用v0、a、b、L、B和ρ表示)。
关于点电荷周围电势大小的公式为U=kQ/r,式中常量k>0,Q为点电荷所带的电量,r为电场中某点距点电荷的距离.如图所示,两个带电量均为+q的小球B、C,由一根长为L的绝缘细杆连接,并被一根轻质绝缘细线静止地悬挂在固定的小球A上,C球离地的竖直高度也为L.开始时小球A不带电,此时细线内的张力为T0;当小球A带Q1的电量时,细线内的张力减小为T1;当小球A带Q2的电量时,细线内的张力大于T0. (1)分别指出小球A带Q1、Q2的电荷时电量的正负;(2)求小球A分别带Q1、Q2的电荷时,两小球B、C整体受到小球A的库仑力F1与F2大小之比;(3)当小球A带Q3的电量时细线恰好断裂,在此瞬间B、C两带电小球的加速度大小为a,求Q3;(4)在小球A带Q3(视为已知)电量情况下,若B球最初离A球的距离为L,在细线断裂到C球着地的过程中,小球A的电场力对B、C两小球整体做功为多少?(设B、C两小球在运动过程中没有发生转动)
质量为4 kg的雪橇在倾角θ=37º的斜坡上向下滑动,所受的空气阻力与速度成正比,比例系数未知.今测得雪橇运动的v-t图象如图所示,且AB是曲线最左端那一点的切线,B点的坐标为(4,15),CD线是曲线的渐近线.试问: (1)物体开始时做什么运动?最后做什么运动? (2)当v0=5m/s和v1=10 m/s时,物体的加速度各是多少? (3)空气阻力系数k及雪橇与斜坡间的动摩擦因数各是多少?
有人设计了一种测定液体温度的仪器,其结构如图所示.在两端封闭、粗细均匀的竖直玻璃管内,有一段长10 cm的水银柱将管内气体分隔成上、下两部分,上部分气柱长20 cm、压强为50cmHg,下部分气柱长5 cm.今将玻璃管下部插入待测液体中(上部分气体温度始终与环境温度相同,上下两部分气体可以认为没有热交换),这时水银柱向上移动了2 cm,已知环境温度是20ºC,试问: (1)此时上部分气体的压强为多少cmHg? (2)待测液体的温度是多少ºC?(计算结果保留一位小数)
A、B两球质量分别为m1与m2,用一劲度系数为k的弹簧相连,一长为L1的细线与m1相连,置于水平光滑桌面上,细线 的另一端拴在竖直轴OO′ 上,如图所示。当m1与m2均以角速度ω绕OO′ 做匀速圆周运动时,弹簧长度为L2,求:(1)此时弹簧伸长量;(2)绳子弹力;(3)将线突然烧断瞬间A、B两球的加速度大小分别是多少。