如图所示,直流电动机M串联在直流电路中,其轴与圆盘中心O相连.开关S断开时,电压表的读数12.6V,开关S接通时,电流表的读数为2A,电压表的读数为12V.圆盘半径为5cm,测速计测得圆盘的转速为r/s,两弹簧秤的读数分别为F1=7N,F2=6.10N,问:(1)电动机的输出功率、效率各为多少?(2)拉紧皮带可使电动机停转,此时电压表、电流表的读数各为多少?电动机的输入功率为多大?
如图所示,足够长的平行金属导轨MN、PQ平行放置,间距为L,与水平面成角,导轨与固定电阻R1和R2相连,且R1=R2=R.R1支路串联开关S,原来S闭合,匀强磁场垂直导轨平面斜向上。有一质量为m的导体棒ab与导轨垂直放置,接触面粗糙且始终接触良好,导体棒的有效电阻也为R,现让导体棒从静止释放沿导轨下滑,当导体棒运动达到稳定状态时速率为v,此时整个电路消耗的电功率为重力功率的3/4。已知当地的重力加速度为g,导轨电阻不计。试求:(1)在上述稳定状态时,导体棒ab中的电流I和磁感应强度B的大小;(2)如果导体棒从静止释放沿导轨下滑距离后运动达到稳定状态,在这一过程中回路产生的电热是多少?(3)断开开关S后,导体棒沿导轨下滑一段距离后,通过导体棒ab的电量为q,求这段距离是多少?
如图所示,一个电阻值为R ,匝数为n的圆形金属线圈与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1 .在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图所示。图线与横、纵轴的截距分别为t0和B0。导线的电阻不计。求0至t1时间内:(1)通过电阻R1上的电流大小和方向;(2)通过电阻R1上的电量q及电阻R1上产生的热量。
如图1所示,真空室中电极K发出的电子(初速不计)经过U 0=1000V的加速电场后,由小孔S沿两水平金属板A、B间的中心线射入。A、B板长l=0.20m,相距d=0.020m,加在A、B两板间的电压u随时间t变化的u-t图线如图2所示。设A、B间的电场可看作是均匀的,且两板外无电场。在每个电子通过电场区域的极短时间内,电场可视作恒定的。两板右侧放一记录圆筒,筒在左侧边缘与极板右端距离b=0.15m,筒绕其竖直轴匀速转动,周期T=0.20s,筒的周长s=0.20m ,筒能接收到通过A、B板的全部电子。 (1)以t=0时(见图2,此时u=0)电子打到圆筒记录纸上的点作为xy坐标系的原点,并取y轴竖直向上。试计算电子打到记录纸上的最高点的y坐标和x坐标。(不计重力作用) (2)在给出的坐标纸(图3)上定量地画出电子打到记录纸上的点形成的图线。
(18分)如图,一小车静止在光滑水平地面上,车顶用长L=0.8m的细线悬挂一静止小球,小车质量m 3=4.0kg,小球质量m 2=0.9kg,一质量为m 1=0.1kg的子弹以速度v 1=10m/s水平射入球内(作用时间极短,g取10m/s 2),求 (1)细线上摆的最大角度θ。 (2)小球第一次返回最低点时,小球的速度和小车的速度。
原地起跳时,先屈腿下蹲,然后突然蹬地。从开始蹬地到离地是加速过程(视为匀加速)加速过程中重心上升的距离称为"加速距离"。离地后重心继续上升,在此过程中重心上升的最大距离称为"竖直高度"。现有下列数据:人原地上跳的"加速距离"d 1=0.50m,"竖直高度"h 1=1.0m;跳蚤原地上跳的"加速距离"d 2=0.00080m,"竖直高度"h 2=0.10m。假想人具有与跳蚤相等的起跳加速度,而"加速距离"仍为0.50m,则人上跳的"竖直高度"是多少?