在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q,质量为m的微粒从原点出发沿与x轴正方向的夹角为45°的初速度进入复合场中,正好做直线运动,当微粒运动到A(2L,2L)时,电场方向突然变为竖直向上(不计电场变化的时间),粒子继续运动一段时间后,正好垂直于y轴穿出复合场.(不计一切阻力)求:(1)电场强度E大小;(2)磁感应强度B的大小
如图所示,质量为2kg的物体静止放在水平地面上,已知物体与水平地面间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,现给物体施加一个与水平面成370角的斜向上的拉力F=5N的作用。(取g=10 m/s2,sin37="0.6," cos37=0.8)求:(1)物体与地面间的摩擦力大小; (2)5s内的位移大小。
两个相同的小球A和B,质量均为m,用长度相同的两根细线把A、B两球悬挂在水平天花板上的同一点O,并用长度相同的细线连接A、B两小球,然后,用一水平方向的力F作用在小球A上,此时三根细线均处于直线状态,且OB细线恰好处于竖直方向,如图所示.如果不考虑小球的大小,两小球均处于静止状态,则:(1)OB绳对小球的拉力为多大?(2)OA绳对小球的拉力为多大?(3)作用力F为多大?
质量是60kg的人站在升降机中的体重计上(g取10m/s2),求:(1)升降机匀速上升时体重计的读数;(2)升降机以4m/s2的加速度匀加速上升时体重计的读数;(3)当体重计的读数是420N时,判断升降机的运动情况。
如图甲所示,在空间存在垂直纸面向里的场强为B的匀强磁场,其边界AB、CD相距为d,在左边界的Q点处有一个质量为m、带电量大小为q的负电粒子,沿着与左边界成30°的方向射入磁场,粒子重力不计,求:(1)带电粒子能从AB边界飞出的最大速度;(2)若带电粒子能垂直于CD边界飞出磁场,穿过小孔进入如图乙所示的匀强电场中减速至零且不碰到负极板,则极板间电压以及整个过程中粒子在磁场中运动的时间为多少?(3)若带电粒子的速度为(2)中速度的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的长度为多少?
游客对过山车的兴趣在于感受到力的变化,这既能让游客感到刺激,但又不会受伤,设计者通过计算“受力因子”来衡量作用于游客身上的力,“受力因子”等于座椅施加给游客的力除以游客自身的重力,可以利用传感器直接显示数值。如图所示为过山车简化原理图:左边部分是装有弹射系统的弹射区,中间部分是作为娱乐主体的回旋区,右边部分是轨道的末端的制动区。某位质量m=60kg游客坐过山车运动过程中,在轨道A处时“受力因子”显示为7,在轨道B处时“受力因子”显示为0.5,在轨道C处时的“受力因子”显示为0.6。己知大回环轨道半径R=10m,重力加速度g取l0m/s2,则(1)该游客在C处时是超重状态还是失重状态?(2)求该游客从A处运动到B处过程中损失的机械能;(3)在设计时能否将弹射区和制动区的位置互换?试用文字定性分析说明。