某一做直线运动的物体的图象如图所示,根据图象要求:(1)物体距出发点的最远距离.(2)前4秒内物体的位移.(3)前4秒物体通过的路程.(4)前3秒内的平均速度.
倾角为θ的斜面上有质量为m的木块,它们之间的动摩擦因数为μ.现用水平力F推动木块,如图所示,使木块恰好沿斜面向上做匀速运动.若斜面始终保持静止,求水平推力F的大小.
有一电子经电压加速后,进入两块间距为,电压为的平行金属板间,若电子从两板正中间垂直电场方向射入,且正好能穿出电场,设电子的电量为.求:金属板的长度。电子穿出电场时的动能。
用30cm的细线将质量为4×10-3㎏的带电小球P悬挂在O点下,当空中有方向为水平向右,大小为1×104N/C的匀强电场时,小球偏转37°后处在静止状态。(sin37o=0.6;cos37o=0.8)分析小球的带电性质求小球的带电量求细线的拉力
如图所示,固定于同一条竖直线上的A、B是两个带等量异种电荷的点电荷,电荷量分别为+Q和-Q,A、B相距为2d,MN是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p,质量为m、电荷量为+q(可视为点电荷,不影响电场的分布),现将小球p从与点电荷A等高的C处由静止开始释放,小球p向下运动到距C点距离为d的O点时,速度为v,已知MN与AB之间的距离为d,静电力常量为k,重力加速度为g,求:C、O间的电势差UCO;O点处的电场强度E的大小;小球p经过与点电荷B等高的D点时的速度。
如图所示,BCDG是光滑绝缘的3/4圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中,现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时,受到轨道的作用力大小;改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小。