置于真空中(相对介电常数为1)的两块带电的金属板,相距1cm,面积均为10cm2,带电量分别为Q1=2×10-8C,Q2=-2×10-8C,求(1)该平行板电容器的电容(2)极板间电场强度的大小(3)若在两板之间放一个电量q=5×10-9C的点电荷,求金属板对点电荷的作用力大小
(8分)如图所示,A、B两物体在同一直线上运动,当它们相距 s0=7m时,A在水平拉力和摩擦力的作用下,正以vA= 4m/s的速度向右做匀速运动,而物体B此时速度vB=10m/s向右,以a=-2m/s2的加速度做匀减速运动,则经过多长时间A追上B?若vA=8m/s ,则又经多长时间A追上B?
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.求: (1)若滑块从水平轨道上距离B点为s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小; (2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小; (3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示,轨道ABC被竖直地固定在水平桌面上,A距离水平地面高H="0.75" m,C距离水平地面高h="0.45" m,一质量m="0.10" kg的小物块自A点从静止开始下滑,从C点以水平速度飞出后落在水平地面上的D点。现测得C、D两点的水平距离为L=0.60m。不计空气阻力,取 g="10" m/s2。求; (1)小物块从C点运动到D点经历的时间; (2)小物块从C点飞出时速度的大小; (3)小物块从A点运动到C点的过程中克服摩擦力做的功。
如图所示,一固定的足够长的粗糙斜面与水平面夹角.一个质量的小物体(可视为质点),在F=10 N的沿斜面向上的拉力作用下,由静止开始沿斜面向上运动.已知斜面与物体间的动摩擦因数,取.试求: (1)物体在拉力F作用下运动的加速度; (2)若力F作用1.2 s后撤去,物体在上滑过程中距出发点的最大距离s;
如图,传送带与地面成夹角θ=37°,以2m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.8,已知传送带从A→B的长度L=9m(传送带与轮子间无相对滑动,不计轮轴处的摩擦,g=10m/s2),求: (1)物体从A到B需要的时间; (2)每隔1s放上一个物体,求在相当长一段时间内,传动带由于传送物体而多消耗的功率。