如图所示,矩形盒内用两根细线固定一个质量为m=1.0kg的均匀小球,a线与水平方向成53°角,b线水平。两根细线所能承受的最大拉力都是Fm=15N.(sin 37°=0.6,cos 37°=0.8,取g=10m/s2)求:(1)当该系统沿竖直方向加速上升时,为保证细线不被拉断,加速度可取的最大值。(2)当该系统沿水平方向向右匀加速运动时,为保证细线不被拉断,加速度可取的最大值。
抛体运动在各类体育运动项目中很常见,如乒乓球运动。现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力。(设重力加速度为g)(1)若球在球台边缘O点正上方高度h1处以速度v1水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x1。(2)若球在O点正上方以速度v2水平发出,经水平地面反弹后恰好在最高点时越过球网落在球台的P2点(如图虚线所示),求v2的大小。(3)若球在O点正上方4 h/3处以速度v3水平发出后,球经水平地面一次反弹后恰好越过球网,求v3的大小。
如图所示,轻杆长为3L, 在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内转动,已知球A运动到最高点时,球A对杆恰好无作用力。求:(1)球A在最高点时的角速度大小;(2)球A在最高点时,杆对水平轴的作用力的大小和方向。
随着航天技术的不断发展,人类宇航员可以乘航天器登陆一些未知星球。一名宇航员在登陆某星球后为了测量此星球的质量进行了如下实验:他把一小钢球托举到距星球表面高度为h处由静止释放,计时仪器测得小钢球从释放到落回星球表面的时间为t。此前通过天文观测测得此星球的半径为R,已知万有引力常量为G,不计小钢球下落过程中的气体阻力,可认为此星球表面的物体受到的重力等于物体与星球之间的万有引力。求:(1)此星球表面的重力加速度g;(2)此星球的质量M;(3)若距此星球表面高H的圆形轨道有一颗卫星绕它做匀速圆周运动,求卫星的运行周期T。
如图所示,半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD相通,一小球以一定的速度先滑上甲轨道,通过动摩擦因数为μ的CD段,又滑上乙轨道,最后离开两圆轨道,若小球在两圆轨道的最高点对轨道的压力都恰好为零,求CD段的长度
长度L=0.4m的细线,拴着一个质量m=0.3kg的小球,在竖直平面内作圆周运动,小球运动到最低点时离地面高度h=0.8m,此时细线受到的拉力F=7N,g取10m/s2,求:(1)小球在最低点速度的大小;(2)若小球运动到最低点时细线恰好断裂,则小球着地时速度为多大?