(本小题满分12分)已知函数(为自然对数的底数),曲线在点处的切线方程为.(1)求,的值;(2)任意,时,证明:.
设集合是函数的定义域,集合是函数的值域.(Ⅰ)求集合;(Ⅱ)设集合,若集合,求实数的取值范围.
已知椭圆:.(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.①证明直线与轴交点的位置与无关;②若∆面积是∆面积的5倍,求的值;(2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
已知数列,是其前项的和,且满足,对一切都有成立,设.(1)求;(2)求证:数列 是等比数列;(3)求使成立的最小正整数的值.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.(1)求抛物线方程;(2)求证:.
已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.