(本小题满分10分)选修4-1:几何证明选讲如图,是⊙的直径,是弧的中点,,垂足为,交于点.(1)求证:;(2)若,⊙的半径为6,求的长.
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 (2)试根据已求出的线性回归方程,预测记忆力为9的同学的判断力.
已知曲线C:(1)当为何值时,曲线C表示圆;(2)在(1)的条件下,若曲线C与直线交于M、N两点,且,求的值.(3)在(1)的条件下,设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (1)求证DM∥平面APC;(2)求证平面ABC⊥平面APC;(3)若BC=PC=4,求二面角P-AB-C的正弦值.
已知数列是一个等差数列且,,(1)求通项公式;(2)求的前项和的最小值.
风景秀美的湖畔有四棵高大的银杏树,记做、、、,欲测量、两棵树和、两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得、两点间的距离为米,如图,同时也能测量出,,,,则、两棵树和、两棵树之间的距离各为多少?