如图1,在四边形ABCD中,∠ABC+∠ADC=180°,BE、DF分别是∠ABC与∠ADC的平分线,∠ADF与∠AFD互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图2,延长CB、DF相交于点G,过点B作BH⊥FG,垂足为点H,试判断∠FBH与∠GBH的大小关系,并说明理由.
已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为A(﹣1,0),另一交点为B,与y轴的交点坐标为C(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)求出顶点D的坐标以及S△BCD面积;(3)根据图象,写出函数值y为正数时,自变量x的取值范围.
如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
已知格点△ABC. (1)画出与△ABC相似的格点△A1B1C1,使△A1B1C1与△ABC的相似比为2; (2)画出与△ABC相似的格点△A2B2C2,使△A2B2C2与△ABC的相似比为; (3)格点△A1B1C1和格点△A2B2C2的相似比为 .
今年3月5日,我校组织全体学生参加了“走出校门,服务社会”的活动.九年级三班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据同学所作的两个图形.解答:(1)九年级三班有多少名学生;(2)补全直方图的空缺部分;(3)若九年级有800名学生,估计该年级去敬老院的人数.