已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点. (1)求一次函数的解析式. (2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值. (3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.
如图,在中,,以AC为直径作,交AB于D,过O作OE//AB,交BC于E,求证:ED为的切线.
某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:在这次研究中,一共调查了多少名学生?喜欢排球的人数在扇形统计图中所占的圆心角是多少度?补全频数分布折线统计图.
已知,如图,梯形ABCD中,AB∥CD,AD=BC,E是底边AB的中点,求证:DE=CE.
解方程
如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点从 出发以每秒2个单位长度的速度向运动;点从同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点作垂直轴于点,连结AC交NP于Q,连结MQ. 点 (填M或N)能到达终点;求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.