在如图所示的电路中,电源电动势E=6.0V,内阻r=2Ω,定值电阻R1= R2=10Ω,R3=30Ω,R4=35Ω,电容器的电容C=100μF,电容器原来不带电。求:(1)闭合开关S后,电路稳定时,流过R3的电流大小I3;(2)闭合开关S后,直至电路稳定过程中流过R4的总电荷量Q.
如图所示,在坐标系xoy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一质量为m、带电荷量为+q的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。 (1)求粒子过Q点时速度的大小和方向。 (2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0; (3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。
一个质量为m带电荷量为+q的小球每次均以水平初速度v0自h高度做平抛运动。不计空气阻力,重力加速度为g,试回答下列问题: (1)若在空间竖直方向加一个匀强电场,发现小球水平抛出后做匀速直线运动,求电场强度E ? (2)撤消匀强电场,小球水平抛出至第一落地点P,则位移S的大小是多少? (3)恢复原有匀强电场,再在空间加一个垂直纸面向外的匀强磁场,发现小球第一落地点仍然是P点,试问磁感应强度B是多大?
一个200匝、面积为20cm2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05s内由0.1 T增加到0.5T,在此过程中磁通量变化了多少?磁通量的平均变化率是多少?线圈中感应电动势的大小是多少伏?
如图甲所示,M和N是相互平行的金属板,OO1O2为中线,O1为板间区域的中点,P是足够大的荧光屏.带电粒子连续地从O点沿OO1方向射入两板间. (1)若只在两板间加恒定电压U,M和N相距为d,板长为L(不考虑电场边缘效应).若入射粒子是电量为e、质量为m的电子,试求能打在荧光屏P上偏离点O2最远的电子的动能. (2)若两板间只存在一个以O1点为圆心的圆形匀强磁场区域,磁场方向垂直纸面向里,已知磁感应强度B=0.50T,两板间距d=cm,板长L=1.0cm,带电粒子质量m=2.0×10-25kg,电量q=8.0×10-18C,入射速度v =×105m/s.若能在荧光屏上观察到亮点,试求粒子在磁场中运动的轨道半径r,并确定磁场区域的半径R应满足的条件. (3)若只在两板间加如图乙所示的交变电压u,M和N相距为d,板长为L(不考虑电场边缘效应).入射粒子是电量为e、质量为m的电子.某电子在t0=时刻以速度v0射入电场,要使该电子能通过平行金属板,试确定U0应满足的条件.
(16分)如图所示,足够长的U形导体框架的宽度L=0.5m,电阻可忽略不计,其所在平面与水平面成θ=37°角.有一磁感应强度B=0.8T的匀强磁场,方向垂直于导体框平面.一根质量m=0.2kg、电阻为R=2Ω的导体棒MN垂直跨放在U形框架上,某时刻起将导体棒由静止释放.已知导体棒与框架间的动摩擦因数μ=0.5.(已知sin37°=0.6,cos37°=0.8,g=10m/s2) (1)求导体棒刚开始下滑时的加速度的大小. (2)求导体棒运动过程中的最大速度和重力的最大功率. (3)从导体棒开始下滑到速度刚达到最大时的过程中,通过导体棒横截面的电量Q=2C,求导体棒在此过程中消耗的电能.