在某一星球上,从80m高处做自由落体的物体,在第1s内下落了4m,求:(1)该物体3s末的速度;(2)在6s内该物体下落的高度.
如图所示,半径为r的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B.半圆的左边分别有两平行金属网M和金属板 N,M、 N两板所接电压为U,板间距离为d.现有一群质量为m、电荷量为q的带电粒子(不计重力)由静止开始从金属板 N上各处开始加速,最后均穿过磁场右边线PQ.求这些粒子到达磁场右边线PQ的最长时间和最短时间差.
电子自静止开始经M、 N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求:(1)正确画出电子由静止开始直至离开匀强磁场时的轨迹图;(用尺和圆规规范作图)(2)匀强磁场的磁感应强度B.(已知电子的质量为m,电荷量为e)
如图所示,表面光滑的平行金属导轨P、Q水平放置,左端与一电动势为E,内阻为r的电源连接.导轨间距为d,电阻不计.导轨上放有两根质量均为m的细棒,棒Ⅰ电阻为R,棒Ⅱ为绝缘体,两棒之间用一轻杆相连.导轨所在的空间有垂直导轨平面竖直向上的匀强磁场,磁感应强度大小为B.求:(1)闭合开关S瞬间棒Ⅱ的加速度;(2)从闭合开关S到两棒速度达到v的过程中,通过棒Ⅰ的电荷量和电源消耗的总能量分别为多少?(导轨足够长)
如图所示,通电导体棒ab质量为m、长为L,水平放置在倾角为θ的光滑斜面上,通以图示方向的电流,电流强度为I,要求导体棒ab静止在斜面上.求:(1)若磁场方向竖直向上,则磁感应强度B为多大?(2)若要求磁感应强度最小,则磁感应强度如何?
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm.电源电动势E="24" V,内电阻r="1" Ω,电阻R="15" Ω.闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间.若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力.那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?此时,电源的输出功率是多大?(取g="10" m/s2)