如图所示,一质量为m、带电荷量为q的小球,用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g.(1)判断小球带何种电荷.(2)求电场强度E.(3)若在某时刻将细线突然剪断,求经过t时间小球的速度v.
有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。(1)已知滑块质量为m,碰撞时间为,求碰撞过程中A对B平均冲力的大小。(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道)。a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°。求A通过M点时的水平分速度和竖直分速度。
(10分)如图所示,五块完全相同的长木板依次紧挨着放在水平地面上,每块木板的长度L=0.5m,质量m=0.6kg。一质量M=1kg的小物块以=3m/s水平速度从第一块长木板的最左端滑入。已知小物块与长木板间的动摩擦因数,长木板与地面间的动摩擦因数,设最大静摩擦力与滑动摩擦力相等。重力加速度g取。求: (1)小物块滑至第四块长木板时,物块与第四块长木板的加速度分别为多大?(2)物块在整个运动过程中相对出发点滑行的最大距离?
在核反应堆中,常用减速剂使快中子减速.假设减速剂的原子核质量是中子的k倍.中子与原子核的每次碰撞都可看成是弹性正碰.设每次碰撞前原子核可认为是静止的,求N次碰撞后中子速率与原速率之比.
如图所示,坡度顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,从斜面进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末湍O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求(1)物块A在与挡板B碰撞前的瞬间速度v的大小;(2)弹簧最大压缩量为d时的弹簧势能EP(设弹簧处于原长时弹性势能为零)。
甲、乙两车,从同一处,同时开始作同向直线运动。已知甲车以14m/s的速度作匀速直线运动,乙车从静止开始作匀加速运动,加速度为2m/s2。试分析:(1)经过多长时间,乙车追上甲车?此时乙车的速度多大?(2)经过多长时间,乙车落后于甲车的距离最大?落后的最大距离是多少?