(本题8分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.
(11·丹东)(本题8分)每个小方格是边长为1个单位长度的小正方形,梯形ABCD在平面直角坐标系中的位置如图所示.(1)在平面直角坐标系中画出梯形ABCD关于直线AD的轴对称图形AB1C1D;(2)点P是轴上一个动点,请直接写出所有满足△POC是等腰三角形的动点P的坐标.
(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.
(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)当AB=AC时,(如图13),① ∠EBF=_______°;② 探究线段BE与FD的数量关系,并加以证明;(2)当AB=kAC时(如图14),求的值(用含k的式子表示).
(11·大连)(本题11分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠部分的面积为S.(1)点B关于直线x=t的对称点B′的坐标为________;(2)求S与t的函数关系式.
(11·大连)(本题10分)如图10,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止.图11是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;⑵求A的高度hA及注水的速度v;⑶求注满容器所需时间及容器的高度.