如下图所示,BC是半径为R=1m的1/4圆弧形光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E=2.0×10-4N/C,今有一质量为m=1kg、带正电q=1.0×10-4C的小滑块,(体积很小可视为质点),从C点由静止释放,滑到水平轨道上的A点时速度减为零。若已知滑块与水平轨道间的动摩擦因数为μ=0.2,求:(1)滑块通过B点时的速度大小;(2)滑块通过B点时圆轨道B点受到的压力大小:(3)水平轨道上A.B两点之间的距离。
如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,D点为O点在斜面上的垂足,OM=ON。带负电的小物体以初速度v1=5m/s从M点沿斜面上滑, 到达N点时速度恰好为零,然后又滑回到M点时速度大小变为v2=3m/s。若小物体电荷量保持不变,可视为点电荷。(1)带负电的小物体从M向N运动的过程中电势能如何变化?电场力共做多少功?(2)N点离斜面底边的高度h为多少?
如图所示为说明示波器工作原理的示意图,已知两平行板间的距离为d、板长为l电子经电压为U1的电场加速后从两平行板间的中央处垂直进入偏转电场,设电子质量为me、电荷量为e。(1)求经电场加速后电子速度v的大小;(2)要使电子离开偏转电场时的偏转角度最大,两平行板间的电压U2应是多少?
如图所示,空间存在着电场强度E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L=0.5 m的绝缘细线一端固定于O点,另一端拴着质量m=0.5 kg电荷量q=4×10-2 C的小球。现将细线拉至水平位置,将小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂。取g=10 m/s2。求:(1)小球的电性;(2)细线能承受的最大拉力值。
如图所示,一平行板电容器接在U=12 V的直流电源上,电容C=3.0×10-10 F,两极板间距离d=1.20×10-3 m,取g=10 m/s2。求:(1)该电容器所带电荷量。(2)若板间有一带电微粒,其质量为m=2.0×10-3 kg,恰在板间处于静止状态,则微粒带电荷量多少?带何种电荷?
如图所示,固定在地面上的光滑圆弧轨道AB、EF,他们的圆心角均为90°,半径均为R。一质量为m ,上表面长也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB、EF的末端B、E相切。一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动。当小车右端与壁DE刚接触时,物体m恰好滑动到小车右端且与小车共速。小车与DE相碰后立即停止运动但不粘连,物体则继续滑上圆弧轨道EF,以后又滑下来冲上小车。求:(1)物体从A点滑到B点时的速率;(2)物体与小车之间的滑动摩擦力;(3)水平面CD的长度;(4)当物体再从轨道EF滑下并滑上小车后,如果小车与壁BC相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端的距离。