如图所示,固定在竖直平面内半径为R的四分之一光滑圆弧轨道与水平光滑轨道平滑连接,A、B二个滑块质量均为m,B静止在光滑水平轨道上的图示位置。滑块A从圆弧上的P点由静止滑下(P点处半径与水平面成30°角),与B发生正碰并粘合向右运动。求A、B粘合后的速度大小。
(10分)天文观测到某行星有一颗以半径r、周期T环绕该行星做圆周运动的卫星,已知卫星质量为m.求: (1)该行星的质量M是多大? (2)如果该行星的半径是卫星运动轨道半径的1/10,那么行星表面处的重力加速度是多大?
分)一带电质点从图中的A点竖直向上射入一水平方向的匀强电场中,质点运动到B点时,速度方向变为水平,已知质点质量为m,带电量为q,AB间距离为L,且AB连线与水平方向成角,求(注意:图中vA、vB未知) (1)质点从A运动到B时间; (2)电场强度E;
分)如图所示,空间存在着强度E=方向竖直向上的匀强电场,在电场内一长为的绝缘细线,一端固定在O点,一端拴着质量m、电荷量q的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.求: (1)小球运动最高点时的速度; (2)细线能承受的最大拉力; (3)从断线开始计时,在t=时刻小球与O点的距离。
如图所示,长为L (L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为的带电粒子从a点沿ab方向进入电场,不计粒子重力。求: (1)若粒子从c点离开电场,求电场强度的大小; (2)若粒子从bc边某处离开电场时速度为,求电场强度的大小。
如图所示,竖直面内有一绝缘轨道,AB部分是光滑的四分之一圆弧,圆弧半径R=0.5m,B处切线水平,BC部分为水平粗糙直轨道。有一个带负电的小滑块(可视为质点)从A点由静止开始下滑,运动到直轨道上的P处刚好停住。小滑块的质量m=1kg,带电量为保持不变,滑块小轨道BC部分间的动摩擦因数为μ=0.2,整个空间存在水平向右的匀强电场,电场强度大小为E=4.0×102N/C.(g=10m/s2) (1)求滑块到达B点瞬间的速度大小 (2)求滑块到达B点瞬间对轨道的压力大小。 (3)求BP间的距离,