一 质量m=2.0kg的小物块以一定的初速度冲上一倾角为37°足够长的斜面,某同学利用传感器测出了小物块冲上斜面过程中多个时刻的瞬时速度,并用计算机 做出了小物块上滑过程的速度-时间图线,如图所示。(取sin37°=0.6,cos37°=0.8,g =10m/s2)求:(1)小物块与斜面间的动摩擦因数; (2)小物块冲上斜面所能达到的最高点距斜面底端的距离;(3)小物块返回斜面底端时的动能。
如图所示,虚线MN左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L、电场强度为E2=2E的匀强电场,在虚线PQ右侧相距为L处有一与电场E2平行的屏。现将一电子(电荷量为e,质量为m)无初速度地放入电场E1中的A点(A点离两场边界距离为L/2),最后电子打在右侧的屏上,AO连线与屏垂直,垂足为O,求: (1)电子从释放到刚射出电场E2时所用的时间; (2)电子刚射出电场E2时的速度方向与AO连线夹角θ的正切值tan θ; (3)电子打到屏上的点P′到点O的距离y。
如图所示,质量m=1kg的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1 m的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内)。右侧回路中,电源的电动势E=8V、内阻r=1Ω,额定功率为8W、额定电压为4V的电动机M正常工作。取sin37°=0.6,cos37°=0.8,重力加速度大小g=10 m/s2。试求: (1)电动机当中的电流IM与通过电源的电流I总。 (2)金属棒受到的安培力大小及磁场的磁感应强度大小。
如图所示,直角坐标系xOy位于竖直平面内,y轴竖直向上.第Ⅲ、Ⅳ象限内有垂直纸面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出).一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O点的距离为d,重力加速度为g.根据以上信息,可以求出的物理量有()
质量为1kg的小球用长为0.5m的细线悬挂在O点,O点距地面高度为1m,如果使小球绕OO′轴在水平面内做圆周运动,若细线受到拉力为12.5N就会被拉断。求: (1)当小球的角速度为多大时线将断裂? (2)小球落地点与悬点的水平距离。(g取10 m/s2)
某个质量为m的物体在从静止开始下落的过程中,除了重力之外还受到水平方向的大小、方向都不变的力F=mg的作用。 (1)这个物体在沿什么样的轨迹运动?求它在时刻t的速度大小。 (2)建立适当的坐标系,写出这个坐标系中代表物体运动轨迹的x、y之间的关系式。