在一次跳伞特技表演中,运动员从高度为300 m的静止在空中的直升飞机上无初速度下落,5s后他打开伞包,落地时速度为6m/s.不计打开伞包前的空气阻力,并假设打开伞包后运动员做匀变速运动,g取10 m/s2.求:(1)打开伞包时运动员的速度(2)打开伞包后运动员的加速度及运动时间
某型号小汽车发动机的额定功率为60kw,汽车质量为1×103kg,在水平路面上正常行驶中所受到的阻力为车重的0.15倍。g取10m/s3。求解如下问题: (1)此型号汽车在水平路面行驶能达到的最大速度是多少? (2)若此型号汽车以额定功率加速行驶,当速度达到20m/s时的加速度大小是多少? (3)质量为60kg的驾驶员驾驶此型号汽车在水平高速公路上以30m/s的速度匀速行驶,设轮胎与路面的动摩擦因数为0.60,驾驶员的反应时间为0.30s,则驾驶员驾驶的汽车与前车保持的安全距离最少为多少?
如图所示,质量为M的长方形木板静止在光滑水平面上,木板的左侧固定一劲度系数为k的轻质弹簧,木板的右侧用一根伸直的并且不可伸长的轻绳水平地连接在竖直墙上。绳所能承受的最大拉力为T0一质量为m的小滑块以一定的速度在木板上无摩擦地向左运动,而后压缩弹簧。弹簧被压缩后所获得的弹性势能可用公式计算,k为劲度系数,z为弹簧的形变量。 (1)若在小滑块压缩弹簧过程中轻绳始终未断,并且弹簧的形变量最大时,弹簧对木板的弹力大小恰好为T,求此情况下小滑块压缩弹簧前的速度v0; (2)若小滑块压缩弹簧前的速度为已知量,并且大于(1)中所求的速度值求此情况下弹簧压缩量最大时,小滑块的速度; (3)若小滑块压缩弹簧前的速度人于(1)中所求的速度值v0,求小滑块最后离开木板时,相对地面速度为零的条件。
如图甲所示,CDE是固定在绝缘水平面上的光滑金属导轨,CD=DE=L,∠CDE=60°,CD和DE单位长度的电阻均为r0,导轨处于磁感应强度为B、竖直向下的匀强磁场中。 MN是绝缘水平面上的一根金属杆,其长度大于L,电阻可忽略不计。现MN在向右的水平拉力作用下以速度v0。在CDE上匀速滑行。MN在滑行的过程中始终与CDE接触良好,并且与C、E所确定的直线平行。 (1)求MN滑行到C、E两点时,C、D两点电势差的大小; (2)推导MN在CDE上滑动过程中,回路中的感应电动势E与时间t的关系表达式; (3)在运动学中我们学过:通过物体运动速度和时间的关系图线(v – t 图)可以求出物体运动的位移x,如图乙中物体在0 – t0。时间内的位移在数值上等于梯形Ov0Pt的面积。通过类比我们可以知道:如果画出力与位移的关系图线(F—x图)也可以通过图线求出力对物体所做的功。 请你推导MN在CDE上滑动过程中,MN所受安培力F安与MN的位移x的关系表达式,并用F安与x的关系图线求出MN在CDE上整个滑行的过程中,MN和CDE构成的回路所产生的焦耳热。
如图所示,倾角=37°的斜面固定在水平面上。质量m=1.0kg的小物块受到沿斜面向上的F=9.0N的拉力作用,小物块由静止沿斜面向上运动。小物块与斜面间的动摩擦因数(斜面足够长,取g=l0m/s2。sin37°=0.6,cos37°=0.8) (1)求小物块运动过程中所受摩擦力的大小; (2)求在拉力的作用过程中,小物块加速度的大小; (3)若在小物块沿斜面向上运动0.80m时,将拉力F撤去,求此后小物块沿斜面向上运动的距离。
.如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据.(重力加速度g=10m/s2) 求:(1)斜面的倾角a;
(2)物体与水平面之间的动摩擦因数m; (3)t=0.6s时的瞬时速度v.