把一张长120厘米、宽100厘米的长方形裁成大小相等的正方形,纸无剩余,至少能裁成多少个正方形?
如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)(1)求点P6的坐标;(2)求△P5OP6的面积;(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案
已知用含的代数式表示.甲、乙两位同学跑上讲台,板书了下面两种解法:同学甲解: 同学乙解:因为, .老师看罢,提出下面的问题:(1)两位同学的解法都正确吗?为什么?(2)请你再给出一种不同于甲、乙二人的解法
要对一块长60米、宽40米的矩形荒地进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为和,且到的距离与到的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
如图1,中,,.(1)将向右平移个单位长度,画出平移后的;(2)画出关于轴对称的;(3)将绕原点旋转,画出旋转后的;(4)在,,中,______与______成轴对称,对称轴是______;______与______成中心对称,对称中心的坐标是____