看图列出方程并解答.
(本小题满分12分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.(1)求椭圆的方程;(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.
.(本小题满分12分)已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.(1)求常数a,b,c的值;(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;(3)求函数的单调递减区间,并证明:
(本小题满分12分)在平面直角坐标系中,已知三点,,,曲线C上任意—点满足:.(l)求曲线C的方程;(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为,.试探究的值是否与点P及直线L有关,并证明你的结论;(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.
如图,a是海面上一条南北方向的海防警戒线,在a上一点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20km和54km处。某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A、20s后监测点C相继收到这一信号。在当时的气象条件下,声波在水中传播速度是.(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线a的距离。
(本小题满分12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.