用0.5与3.6的积除以两个0.3的积,商是多少?(列出综合算式计算)
设,是任意两个不等实数,我们规定:满足不等式≤≤的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;(3)若二次函数是闭区间上的“闭函数”,直接写出实数, 的值.
已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.(1)如图l,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM、ED、MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,请你判断线段FM和FN之间的数量关系,并证明你的判断是正确的.
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2)若直线MN上存在点P,使得PA+PB的值最小,请直接写出PA的长度.
如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.
如图,在平行四边形ABCD中,E为BC边上的一点,连接AE、BD交于点F,AE=AB.(1)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.(2)若AB=10,BE=2EC,求EF的长.