口算下面各题.0.5×1.2= 1.25×0.8= 0.16×0.5=0.25×4= 3.2×0.5= 0.2×50=1.1×0.1= 1.7×0.03= 2.4×0.5=0.12×7=
如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M. (1)若∠ACD=114°,求∠MAB的度数; (2)若CN⊥AM,垂足为N,求证:△CAN≌△MCN.
2014年阜宁县中小学积极开展体艺“2+1”活动,某校学生会准备调查八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数: (1)确定调查方式时,甲同学说:“我到八年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到八年级每个班随机调查一定数量的同学”。请你指出哪位同学的调查方式最合理; (2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图。
请你根据以上图表提供的信息解答下列问题: ①填空;a= , b=, c= , ②在扇形统计图中器乐类所对应扇形的圆心角的度数是; ③若该校八年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD. 求证:(1)BC=AD; (2)△OAB是等腰三角形
如图,AC⊥CB,垂足为C点,AC=CB=8cm,点Q是AC的中点,动点P由B点出发,沿射线BC方向匀速移动.点P的运动速度为2cm/s.设动点P运动的时间为ts.为方便说明,我们分别记三角形ABC面积为S,三角形PCQ的面积为S1,三角形PAQ的面积为S2,三角形ABP的面积为S3. (1)S3=cm2(用含t的代数式表示); (2)当点P运动几秒,S1=S,说明理由; (3)请你探索是否存在某一时刻,使得S1=S2=S3, 若存在,求出t值,若不存在,说明理由.
如图,在数轴上的A1、A2、A3、A4…A20,这20个点所表示的数分别为a1、a2、a3、a4、…a20.若A1A2=A2A3=…=A19A20,且a3=20 ,=12. (1)求a1的值; (2)若=a2+a4,求x的值; (3)求a20的值.