机械横波某时刻的波形图如图所示,波沿x轴正方向传播,质点p的坐标x=0.32 m.从此时刻开始计时.(1)若每间隔最小时间0.4 s重复出现波形图,求波速.(2)若p点经0.4 s第一次达到正向最大位移,求波速.(3)若p点经0.4 s到达平衡位置,求波速.
如图甲,平行导轨MN、PQ水平放置,电阻不计.两导轨间距d=10cm,导体棒ab、cd放在导轨上,并与导轨垂直.每根棒在导轨间的部分,电阻均为R=1.0Ω.用长为L=20cm的绝缘丝线将两棒系住.整个装置处在匀强磁场中.t=0的时刻,磁场方向竖直向下,丝线刚好处于未被拉伸的自然状态.此后,磁感应强度B随时间t的变化如图乙所示.不计感应电流磁场的影响.整个过程丝线未被拉断.求:⑴0~2.0s的时间内,电路中感应电流的大小与方向;⑵t=1.0s的时刻丝线的拉力大小.
如图所示,放置在水平面内的平行金属框架宽为L=0.4m,金属棒ab置于框架上,并与两框架垂直,整个框架位于竖直向下、磁感强度B=0.5T的匀强磁场中,电阻R=0.09Ω,ab的电阻r=0.01Ω,摩擦不计,当ab在水平恒力F作用下以v=2.5m/s的速度向右匀速运动时,求:(1)回路中的感应电流的大小;(2) 恒力F的大小;(3) 电阻R上消耗的电功率.
(14分)在直径1.6m的圆柱体一端截出一圆锥,如下图所示,在看到剖面上,三角形的三边之比为3:4:5, 圆柱体可绕其中心对称轴匀速旋转。将一小木块放置在斜面的中点,它与斜面间动摩擦力因素为0.25,若小木块保持在此位置不动,则圆柱体旋转的角速度应为多大.(;g取10m/s2)
(10分) 在离地面某高度的同一位置上有a、b两个质点分别以3m/s和4m/s的水平速度向左和右方向抛出,则当两个质点的速度方向相互垂直时,他们之间的距离是多少.(g取10m/s2)
(10分)在“勇气号”火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来.假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为r0的均匀球体.