如图所示的水平转盘可绕竖直轴OO′旋转,盘上水平杆上穿着两个质量均为m=2kg的小球A和B。现将A和B分别置于距轴rA=0.5m和rB=1m处,并用不可伸长的轻绳相连。已知两球与杆之间的最大静摩擦力都是fm=1N。试分析转速ω从零缓慢逐渐增大(短时间内可近似认为是匀速转动),两球对轴保持相对静止过程中,在满足下列条件下,ω的大小。(1)绳中刚要出现张力时的ω1;(2)A、B中某个球所受的摩擦力刚要改变方向时的ω2,并指明是哪个球的摩擦力方向改变;(3)两球对轴刚要滑动时的ω3。
(13分)一个质量为m=1kg的木箱在水平地面上沿直线向右运动,到达A处时木箱开始受到大小恒为F=4N的水平向左的拉力作用,此后木箱继续沿同一直线运动,经过t=2s到达B处,木箱在B处的速度与在A处的速度大小相等。已知木箱与水平地面之间的动摩擦因数为μ=0.2,重力加速度g=10m/s2,求木箱在这2s内的位移。
如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U形金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2. 相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.
如图所示,匀强磁场的磁感应强度B=0.5 T,边长L=10 cm的正方形线圈abcd共100匝,线圈电阻r=1 Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2π rad/s,外电路电阻R=4 Ω,求:(1)转动过程中感应电动势的最大值;(2)由图示位置转过60°角的过程中产生的平均感应电动势;(3)交流电压表的示数;
如图所示,水平放置的平行金属导轨,相距l=0.50 m,左端接一电阻R=0.20 Ω,磁感应强度B=0.40 T的匀强磁场方向垂直于导轨平面,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)ab棒中感应电动势的大小;(2)回路中感应电流的大小;(3)维持ab棒做匀速运动的水平外力F的大小.
(10分)如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN构成一个边长为l的正方形.为使MN棒中不产生感应电流,从t=0开始,磁感应强度B应怎样随时间t变化?请推导出这种情况下B与t的关系式.