如图所示,将一个小球水平抛出,抛出点距水平地面的高度h=1.8m,小球抛出的初速度为。不计空气阻力。取g=。求:(1)小球从抛出到落地经历的时间t;(2)小球落地点与抛出点的水平距离S;(3)小球落地时的速度大小V。
如图传送带A、B之间的距离为L ="3.2" m,与水平面间夹角 θ = 37°,传送带沿顺时针方向转动,速度恒为v ="2" m/s,在上端A点无初速放置一个质量为m=1kg、大小可视为质点的金属块,它与传送带的动摩擦因数为μ = 0.5,金属块滑离传送带后,经过弯道,沿半径R =" 0.4" m的光滑圆轨道做圆周运动,刚好能通过最高点E,已知B、D两点的竖直高度差为h =" 0.5m" (取g=10m/s2) .求:(1)金属块经过D点时的速度(2)金属块在BCD弯道上克服摩擦力做的功.
麦克斯韦在1865年发表的《电磁场的动力学理论》一文中揭示了电、磁现象与光的内在联系及统一性,即光是电磁波.一单色光波在折射率为1.5的介质中传播,某时刻电场横波图象如图甲所示,求该光波的频率.
如图,金属圆柱形气缸的上部有小挡板,可以阻止活塞滑离气缸,气缸内部的高度为L,质量不计的薄活塞将一定质量的气体封闭在气缸内.开始时圆柱形气缸被加热到327℃ ,气体压强为1.5 p0,已知外界环境温度为t1=27℃,外界大气压强为p0=1atm,求:(1)气体温度降低到t2=150℃时,活塞离底部的高度;(2)最后稳定时(与外界环境温度相同), 活塞离底部的高度
如图甲所示,平行正对金属板中心线O处有一粒子源,能连续不断发出质量为m、电量为q、速度为v0的带正电的粒子,所有粒子均沿两板中心线射入板间,在紧靠板的上方等腰三角形PQR内有一垂直纸面向里的匀强磁场,三角形的对称轴与两板中心线重合,且∠RPQ=30°.两板间不加电压时粒子进入磁场时轨迹恰好与PR边相切,如图中所示.当在两板间加如图乙所示的周期性变化的电压时,t=0时刻进入板间的粒子恰好能从板边缘进入磁场.已知板长为l,板间距离为2d,PQ长度为6d,不计粒子的重力和粒子间的相互作用.求:⑴磁感应强度B的大小;⑵两板间电压U0;⑶粒子在磁场中运动的最长和最短时间.
某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8。⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.