如图所示,一个小球以v0=8.0 m/s速度从圆弧轨道的O点水平抛出,恰好能沿着斜面所在的方向落在Q点。已知斜面光滑,斜面与水平面的夹角为θ=37°,斜面的高度为h=15 m.忽略空气阻力的影响,重力加速度为g=10 m/s2。求小球从O点抛出到斜面底端的M点所用的总时间。(保留两位有效数字)
如图所示,电源电动势=10V,=3Ω,=6Ω,=30μF,闭合开关,电路稳定后, 路端电压=9V,求:(1)电路稳定后通过的电流;(2)电源的内阻;(3)若开关断开,求这以后通过的总电量。
已知O、A、B、C为同一直线上的四点.AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀加速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等.求O与A的距离.
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0× kg。忽略一切阻力,重力加速度g取10m/s2。 (1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2; (2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2; (3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。
如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm,求滑块从静止释放到速度大小为vm过程中弹簧的弹力所做的功W;(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm是题中所指的物理量。(本小题不要求写出计算过程)
一个物体静置于光滑水平面上,外面扣一质量为M的盒子,如图1所示.现给盒子一初速度v0,此后,盒子运动的v-t图象呈周期性变化,如图2所示.请据此求盒内物体的质量.