如图所示,质量为mA=2kg的木块A静止在光滑水平面上。一质量为mB= 1kg的木块B以某一初速度v0=5m/s沿水平方向向右运动,与A碰撞后都向右运动。木块A 与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。后来木块A与B发生二次碰撞,碰后A、B同向运动,速度大小分别为0.9m/s、1.2m/s。求:①第一次木块A、B碰撞过程中A对B的冲量大小、方向②木块A、B第二次碰撞过程中系统损失的机械能是多少。
如图所示,在倾角θ= 370的足够长的固定斜面底端有一质量m=1.0kg的物体,物体与斜面间动摩擦因数μ=0.25,现用平行斜面向上拉力F=10N将物体由静止沿斜面向上拉动,经时间t = 4.0s撤去F,(sin370 = 0.6,cos370 = 0.8,g=10m/s2)求:(1)撤去力F时物体的速度大小。(2)物体从撤去外力之后沿斜面上滑的最大距离。
重为100N的物体在细线OA、OB共同作用下处于静止状态,细线OA、OB与水平天花板的夹角分别为30°、60°,如图所示,求:(1)细线OA的拉力FOA、细线OB的拉力FOB(2)若细线OA、OB所承受的最大拉力分别为200N、300N,为了使细线OA、OB不会被拉断,则物体的重力不能超过多少?
如图所示,两端开口导热良好的U形玻璃管两边粗细不同,粗管横截面积是细管的2倍。管中装入水银,两管中水银面与管口距离均为12 cm,大气压强为P0="75" cmHg。现将粗管管口封闭,然后将细管管口用一活塞封闭并使活塞缓慢推入管中,直至两管中水银面高度差达6 cm为止。求活塞下移的距离。
如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:(1)微粒从电容器I加速后的速度大小;(2)电容器II CD间的电压;(3)假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。
质量为M=1kg足够长的木板放在水平地面上,木板左端放有一质量为m=1kg大小不计的物块,木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.3。开始时物块和木板都静止,现给物块施加一水平向右的恒力F=6N,当物块在木板上滑过1m的距离时,撤去恒力F。(设最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)(1)求力F做的功;(2)求整个过程中长木板在地面上滑过的距离。