如下图所示,长为L平台固定在地面上,平台的上平面光滑,平台上放有小物体 A和B,两者彼此接触。物体A的上表面是半径为R(R<<L)的光滑半圆形轨道,轨道顶端有一小物体C,A、B、C的质量均为m。现物体C从静止状态沿轨道下滑,已知在运动 过程中,A、C始终保持接触。试求:(1)物体A和B刚分离时,物体B的速度。(2)物体A和B刚分离后,物体C所能达到距台面的最大高度。(3)判断物体A从平台左边还是右边落地并简要说明理由。
在“描绘额定电压为2.5V的小灯泡的伏安特性曲线”实验中,用导线a、b、c、d、e、f、g、h按图(甲)所示方式连接电路,电路中所有元器件都完好.①请根据实验连接电路图在图(乙)中虚线框内画出实验原理图;②合上开关后,若反复调节滑动变阻器,小灯泡亮度发生变化,但电压表、电流表的示数不能调为零,则断路的导线为_____。③实验电路故障完全排除后,实验中测得有关数据如下表:根据表中的实验数据,在图 (丙)中画出小灯泡的I-U特性曲线。④若把该小灯泡直接接到电动势为2.5V,内阻为2.0Ω的电源上,小灯光实际消耗的功率为 W(保留三位有效数字)
如图所示,绝缘传送带与水平地面成37°角,倾角也是37°的绝缘光滑斜面固定于水平地面上且与传送带良好对接,轻质绝缘弹簧下端固定在斜面底端。皮带传动装置两轮轴心相L="6" m,B、C分别是传送带与两轮的切点,轮缘与传送带之间不打滑。现将质量m=0.1kg、电荷量q="+2×" 10-5 C的工件(视为质点,电荷量保持不变)放在弹簧上,用力将弹簧压缩至A点后由静止释放,工件滑到传送带端点B时速度v0= 8m/s,AB间的距离s=1m,AB间无电场,工件与传送带间的动摩擦因数μ=0.25。(g取10m/s2。sin37°=0.6,cos37°=0.8)(1)求弹簧的最大弹性势能;(2)若皮带传动装置以速度v顺时针匀速转动,且v可取不同的值(安全运行的最大速度为10 m/s),在工件经过B点时,先加场强大小E=4×104 N/C,方向垂直于传送带向上的均强电场,0.5s后场强大小变为E'="1.2" ×105 N/C,方向变为垂直于传送带向下。工件要以最短时间到达C点,求v的取值范围;(3)若用Q表示工件由B至C的过程中和传送带之间因摩擦而产生的热量,在满足(2)问的条件下,请推出Q与v的函数关系式。
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板问电势差为U,间距为L;右侧为“台形”匀强磁场区域ACDH,其中,AH//CD, =4L。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“台形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“台形”宽度=L,忽略电场、磁场的边缘效应及粒子间的相互作用。(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;(2)求出这束粒子可能的质量最小值和最大值;(3)求出(2)问中偏转角度最大的粒子在“台形”区域中运动的时间。
遥控电动赛车的比赛中有一个规定项目是“飞跃壕沟”,如图所示,比赛中要求赛车从起点出发,沿水平直轨道运动,在B点飞出后跃过“壕沟”,落在平台EF段。已知赛车的质量m=1.0kg、额定功率P="10.0" W、在水平直轨道上受到的阻力恒为f="2." 0 N, BE的高度差h="0." 45 m,BE的水平距离x="0." 90 m。赛车车长不计,空气阻力不计,g取10m/s2。(1)若赛车在水平直轨道上能达到最大速度,求最大速度vm的大小;(2)要跃过壕沟,求赛车在B点最小速度v的大小;(3)比赛中,若赛车在A点达到最大速度vm后即刻停止通电,赛车恰好能跃过壕沟,求AB段距离s。
电子质量为m、电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:(1) OP的长度;(2)电子从由O点射入到落在P点所需的时间t.