在光滑的水平冰面上建立xOy平面直角坐标系:向东方向为x轴正方向,向南方向为y轴正方向。现有一质量为1kg的质点静止在坐标原点,从t = 0时刻开始,在第一个2s内对质点施加一个向东方向,大小为2N的水平拉力F;在第二个2s内将此力F改为向南方向,大小不变;第三个2s内再将此力F改为向东偏北45°方向,大小不变。求: (1)第4s末质点的速度(结果可以用根式表达);(2)第6s末质点的位置坐标。
如图所示,半径为R的圆板匀速转动,当半径OB转动到某一方向时,在圆板中心正上方高h处以平行OB方向水平抛出一小球,要使小球与圆板只碰撞一次,且落点为B,求: (1)小球的初速度的大小; (2)圆板转动的角速度.
宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行。设每个星体的质量均为m. (1)试求第一种形式下,星体运动的线速度v和周期T. (2)假设两种形式下星体的运动周期相同,试求第二种形式下星体间的距离r应为多少?[设三个星体做圆周运动的半径为(未知)]
宇航员站在某一星球表面上的某高度,沿水平方向抛出一小球,经过时间t,小球落到星球表面上,测得抛出点与落地点之间的距离为.若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为.已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G.不计空气阻力,求该星球的质量.
已知某星球的半径为R,星球的质量为,它的自转周期为T,有一质量为的物体静置于该星球的赤道上,试求物体所受的支持力FN有多大?(不能忽略星球的自转)
如图所示,一个人用一根长为R=1米,能承受最大拉力为F=74N的绳子,系着一个质量为m=1Kg的小球,在竖直平面内作圆周运动,已知圆心O离地面高h=6米。运动中小球在圆周的最低点时绳子刚好被拉断,绳子的质量和空气阻力均忽略不计,g="10" m/s2.求: (1)绳子被拉断的瞬间,小球的速度v的大小? (2)绳断后,小球落地点与圆周的最低点间的水平距离x多大?