已知函数f(x)=ax--3ln x,其中a为常数.(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
设命题:关于的方程无实根;命题:函数的定义域为,若命题"p或q”是真命题,“p且q”是假命题,求实数a的取值范围.
已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.
已知函数,为正整数.(Ⅰ)求和的值;(Ⅱ)数列的通项公式为(),求数列的前项和;(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.
已知数列{an}的前n项和为(Ⅰ)求数列{an}的通项公式;(Ⅱ)若,求数列{Cn}的前n项和Tn
建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.