质量为0.1 kg 的弹性球从空中某高度由静止开始下落,该下落过程对应的图象如图所示。球与水平地面相碰后离开地面时的速度大小为碰撞前的3/4。该球受到的空气阻力大小恒为,取="10" , 求:(1)弹性球受到的空气阻力的大小;(2)弹性球第一次碰撞后反弹的高度。
如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场。A板带正电荷,B板等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1。平行金属板右侧有一挡板M,中有小孔O′,OO′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2。CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,含有各种不同电荷量、不同电性、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B2中,求:(1)沿直线OO′方向进入匀强磁场B2的带电粒子的速度;(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度。
如图甲所示,长、宽分别为L1、L2的矩形金属线框位于竖直平面内,其匝数为n,总电阻为r,可绕其竖直中心轴O1O2转动。线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R相连。线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0、B1和t1均为已知。在0~t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度ω匀速转动。求:(1)0~t1时间内通过电阻R的电流大小;(2)线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;(3)线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电荷量。
如图所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ,Ⅱ区域存在匀强电场EI=1.0×104 V/m,方向垂直边界面竖直向上;EⅡ=×105 V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0 T,方向垂直纸面向里,三个区域宽度分别为d1=5.0 m,d2=4.0 m,d3= m.一质量m=1.0×10-8 kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计.求:(1)粒子离开区域Ⅰ时的速度大小;(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;(3)粒子从O点开始到离开Ⅲ区域时所用的时间.
如图甲所示,一正方形金属线框位于有界匀强磁场区域内,线框的右边紧贴着边界.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动,经过时间t0穿出磁场.图乙所示为外力F随时间t变化的图象.若线框质量为m、电阻R及图象中的F0、t0均为已知量,则根据上述条件,请你推出:(1)磁感应强度B的表达式;(2)线框左边刚离开磁场前瞬间的感应电动势E的表达式.
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm。电源电动势E=24V,内电阻r="1" Ω,电阻R="15" Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间。若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力。那么,(1)滑动变阻器接入电路的阻值为多大时,小球恰能到达A板.(2)此时,电源的输出功率是多大.(取g="10" m/s2)